بهبود سرعت یادگیری شبکه های عصبی ...

تحقيق بهبود سرعت یادگیری شبکه های عصبی ...
 متشکل از 27 صفحه ، در قالب word  قابل ويرايش و اماده پرينت

بخشی از محتوا ::
 مقدمه
شبکه های عصبی چند لایه پیش خور1 به طور وسیعی د ر زمینه های متنوعی از قبیل طبقه بندی الگوها، پردازش تصاویر، تقریب توابع و ... مورد استفاده قرار گرفته است.
الگوریتم یادگیری پس انتشار خطا2، یکی از رایج ترین الگوریتم ها جهت آموزش شبکه های عصبی چند لایه پیش خور می باشد. این الگوریتم، تقریبی از الگوریتم بیشترین تنزل3 می باشد و در چارچوب یادگیری عملکردی 4 قرار می گیرد.
عمومیت یافتن الگوریتمBP ، بخاطر سادگی و کاربردهای موفقیت آمیزش در حل مسائل فنی- مهندسی می باشد.
علیرغم، موفقیت های کلی الگوریتم BP در یادگیری شبکه های عصبی چند لایه پیش خور هنوز، چندین مشکل اصلی وجود دارد:
- الگوریتم پس انتشار خطا، ممکن است به نقاط مینیمم محلی در فضای پارامتر، همگرا شود. بنابراین زمانی که الگوریتم BP همگرا                می شود، نمی توان مطمئن شد که به یک جواب بهینه رسیده باشیم.
- سرعت همگرایی الگوریتم BP، خیلی آهسته است.
از این گذشته، همگرایی الگوریتم BP، به انتخاب مقادیر اولیه وزنهای شبکه، بردارهای بایاس و پارامترها موجود در الگوریتم، مانند نرخ یادگیری، وابسته است.
در این گزارش، با هدف بهبود الگوریتم BP، تکنیک های مختلفی ارائه شده است. نتایج شبیه سازیهای انجام شده نیز نشان می دهد، الگوریتم های پیشنهادی نسبت به الگوریتم استاندارد BP، از سرعت همگرایی بالاتری برخوردار هستند.
خلاصه ای از الگوریتم BP
از قانون یادگیری پس انتشار خطا (BP)، برای آموزش شبکه های عصبی چند لایه پیش خور که عموماً شبکه های چند لایه پرسپترون 5 (MLP) هم نامیده می شود، استفاده می شود، استفاده می کنند. به عبارتی توپولوژی شبکه های MLP، با قانون یادگیری پس انتشار خطا تکمیل می شود. این قانون تقریبی از الگوریتم بیشترین نزول (S.D) است و در چارچوب یادگیری عملکردی قرار می گیرد.
بطور خلاصه، فرایند پس انتشار خطا از دو مسیر اصلی تشکیل می شود. مسیر رفت6 و مسیر برگشت 7 .
در مسیر رفت، یک الگوی آموزشی به شبکه اعمال می شود و تأثیرات آن از طریق لایه های میانی به لایه خروجی انتشار می یابد
تحقيق بهبود سرعت یادگیری شبکه های عصبی ...
متشکل از 27 صفحه ، در قالب word قابل ويرايش و اماده پرينت

فایل های دیگر این دسته

مجوزها،گواهینامه ها و بانکهای همکار

پوشه فایل دارای نماد اعتماد الکترونیک از وزارت صنعت و همچنین دارای قرارداد پرداختهای اینترنتی با شرکتهای بزرگ به پرداخت ملت و زرین پال و آقای پرداخت میباشد که در زیـر میـتوانید مجـوزها را مشاهده کنید